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ABSTRACT: A catalytic domino spirocyclization of 1,7-
enynes with simple cycloalkanes and cyclo-1,3-dicarbonyls
has been established via multiple C−C bond formations
from alkynyl/alkenyl functions and dual α,α-C(sp3)-H
abstraction/insertion. The reaction involves addition, 6-
exo-dig cyclization and radical coupling sequences under
convenient catalytic conditions and provides a concise
access to spiro cyclopenta[c]quinolines in good to
excellent yields.

Widely utilized for numerous challenging and intriguing
syntheses, 1,n-enynes are privileged building blocks for

substrate-specific domino cyclizations.1,2 They can readily result
in multiple functionalities via synergistic cascade processes across
CC and CC bonds of various substrates in one-pot
fashions.3 So far, considerable efforts have been devoted to the
use of 1,n-enynes for assembling highly complex structures of
chemically and biomedically importance.4 Meanwhile, a
transition-metal-catalyzed radical process for sp3 C−H bond
functionalization has emerged as powerful tool for domino C−
C/C−X bond formations due to its remarkable atom-economy
potential.5,6 An extensive literature survey revealed that a single
C−Hbond functionalization on sp3 carbon atom has been widely
studied.7 However, to the best of our knowledge, a dual α,α-
C(sp3)-H activation/bifunctionalization on the same carbon
atom has not be documented yet.
In recent years, our laboratories have been heavily involved in

the development of domino bicyclization reactions for multiple
ring formations.8 For this purpose, we planned the synthesis of
arylalkynyl-anchored starting materials by taking advantage of a
methodology invented by Nevado et al. in which the radical adds
to the double bond ofN-(arylsulfonyl)acrylamides, leading to the
formation of aza-heterocycles through radical addition/arylmi-
gration/desulfonylation sequence (Scheme 1a).9 Surprisingly,
we found the expected products cannot be generated. Instead,
the reaction occurred in a completely unexpected direction
(Scheme 1b). Here, we would like to report this discovery
(Scheme 2).

As shown in Scheme 2, it is particularly interesting and rare
that dual radicals can be readily generated via α,α-C(sp3)-H
activation under a one-pot catalytic condition, and they can
participate in domino reaction consisting of the sequence of
intermolecular α,β-conjugated addition, intramolecular radical
addition onto 1,7-conjugated enynes 1 and radical cyclization.
The present radical spirocyclization between 1,7-enynes and
simple alkanes provides an easy access to a series of spiro-
substituted cyclopenta[c]quinolines with two quaternary stereo-
centers serving for organic and medicinal research.
Initially, we chose methacrylamides 1a and cyclohexane (2a)10

as the model substrates to optimize the reaction conditions
(Table S1, see Supporting Information, SI). We found that the
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Scheme 1. Design of Radical Cyclization of 1,7-Enynes

Scheme 2. Cascade Spirocyclization of 1,7-Enynes
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catalyst and radical initiator showed a significant impact on the
reaction. The desired product was obtained in only 12% yield in
the absence of any catalyst using TBHP (70% in water) as the
oxidant (entry s1, SI). Raising the temperature did not enhance
the chemical yield of 3a (entry s2, SI). Pleasingly, the use of
anhydrous TBHP afforded a higher yield of 42%, which indicates
that the presence of water severely hampered the domino
process. Subsequently, other anhydrous oxidants, such as
benzoyl peroxide (BPO), tert-butyl peroxybenzoate (TBPB),
K2S2O8, dicumylperoxide (DCP), and di-tert-butyl peroxide
(DTBP), were investigated, and it was found that DCP and
DTBP are more efficient than other oxidants (entries s4−s8, SI).
Among the latter two, DTBP was superior to DCP (entry s8, SI)
as the oxidant. Encouraged by these results, a series of metal
catalysts including CuI, CuO, Cu2O, FeCl2, and FeCl3 were
employed for the system; FeCl2 proved to give the highest
catalytic activity (entry 12 vs entries s9-s11 and s13, SI).
Accordingly, the amounts of both FeCl2 and DTBP were
examined (entries s14 and s15, SI); it turned out that 10mol % of
FeCl2 and 4.0 equiv of DTBP gave the highest yield of 89%.
With the above conditions in hand, the scope of 1,7-enynes 1

was examined by reacting them with various simple cyclohexane
2a (Scheme 3).With the benzenesulfonyl protection group (Ar2)
on the amine anchor, the variant of substituents on the
arylalkynyl moiety including, Me, MeO, F, and Cl can tolerate
the catalytic conditions well. Electronic effect of substituents on
the arylalkynyl moiety showed an obvious impact on the reaction

efficiency. Upon the treatment with substrate 1a, the desired
product 3a was obtained in 89% yield. Interestingly, substrate 1a
carrying electron-donating groups showed higher reactivity than
those with electron-withdrawing counterparts (3b, 3c and 3f vs
3d and 3e). Electronic nature of substituents on both N-
arylsulfonyl (Ar2) and arylalkynyl (Ar1) moieties was also
probed. The reaction occurred smoothly with a variety of
functional groups on both N-arylsulfonyl and arylalkynyl
moieties of substrates 1. Reactions of substrates 1 involving
both N-arylsulfonyl and arylalkynyl moieties attached by
electron-donating groups all worked efficiently to give the
spirocyclic cyclopenta[c]quinolines in 82% to 86% yields (3f, 3h,
and 3i). The substrates 1 bearing -Cl and -F onN-phenyl moiety
can also lead to the formation of cyclopenta[c]quinolines 3r−3u
ranging from 57%−66% yields. N-2-naphthalenylsulfonyl (2-
Npsulfonyl) 1,7-enynes were successfully engaged in this radical
cyclization cascades. Alternatively, N-methyl and N-ethyl 1,7-
enynes 1v−1x were successfully converted into the correspond-
ing N-methyl and N-ethyl spirocyclic cyclopenta[c]quinolines
3v−3x in 50−70% yields (Scheme 3b). As expected, 1,7-enynes
with a free amino group (1y) gave a complex mixture (Scheme
3b, 3y). Unfortunately, replacing methyl group with hydrogen on
the terminal olefin unit, 1,7-conjugated enynes did not occur
under the standard conditions, which indicates that the methyl
group linked to terminal olefin unit plays a key role in the success
of this reaction.
To expand the synthetic utility of this reaction, several

cycloalkanes were employed to react with 1,7-enynes (Scheme
4). Using cyclopentane 2b as replacement for cyclohexane 2a,

different groups on 1,7-enynes were proven to be suitable for this
domino process, providing the desired products 4a−4e in
moderate to good yields (Scheme 4). In addition, cycloheptane
2c and adamantine 2d were also found to be suitable for this
reaction. Our next efforts were on studying the feasibility of the
radical spirocyclization using difunctional C-centered radicals,
such as cyclo-1,3-dicarbonyls,11 to replace cycloalkanes. The

Scheme 3. Substrate Scope for Synthesis of 3a

aReaction conditions: 1,7-conjugated enynes (0.25 mmol), FeCl2
(0.025 mmol), DTBP (1.0 mmol), 2.0 mL of cyclohexane as solvent,
120 °C, 12 h. Isolated yields based on 1.

Scheme 4. Substrate Scope for Synthesis of 4a

aReaction conditions: 1,7-conjugated enynes (0.25 mmol), FeCl2
(0.025 mmol), DTBP (1.0 mmol), 2.0 mL of cycloalkane as solvent,
120 °C, 12 h. Isolated yields based on 1. b1,7-conjugated enynes (0.25
mmol), adamantine (1.25 mmol), DTBP (1.0 mmol), 2.0 mL of
chlorobenzene as a solvent, 120 °C, 12 h.
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reaction between 1,7-enynes 1e and 5,5-dimethylcyclohexane-
1,3-dione 2e was conducted. Surprisingly, the reaction cannot
proceed under the above conditions, which forced us to search
for a new condition with regard to catalysis, oxidants, and
solvents. We found that the use of AgNO3 (10 mol %) and
K2S2O8 (2.0 equiv) in the mixed solvent of CH3CN and H2O (v/
v: 4:1)9b can drive the reaction to give product 5a in 74% yield
(Scheme 5). A great scope is shown by various substituents,

including methoxyl, methyl, fluoro, and bromo on the arylalkyne
moieties or on the sulfonyl-attached aryl rings of the substrates,
affording spiro-cyclo-1,3-dicarbonyl-substituted cyclopenta[c]-
quinolines 5a−5f in 67%−90% chemical yields. Similarly,
acrylamides attached with either electron-donating or -with-
drawing moieties at the 4-position of N-sulfonyl aromatic rings
were converted into the corresponding spiro-substituted
cyclopenta[c]quinolines 5g−5i in good yields as well.
It is well-known that barbituric acids loaded with pyrimidine

motifs widely exist in natural compounds, and their derivatives
can serve as anxiolytics, sleeping pills, antispasmodic, and central
nervous system sedatives,12,13 and we thus explored the synthesis
of these compounds by using 1,3-dimethylpyrimidine-2,4,6-
(1H,3H,5H)-trione (1,3-dimethyl barbituric acid) as biradical
donors. To our delight, the reactions using various 1,7-
conjugated enynes 1 in the presence of 10 mol % of AgNO3
and 2.0 equiv of K2S2O8 in a 4:1 ratio of MeCN-H2O mixture at
60 °C led to the formation of products 6a−6h in modest to good
yields (Scheme 6). Substrates with different substitution patterns
on the aromatic rings of both the alkynyl (Ar1) and sulfonyl (Ar2)
moieties in 1 can be efficiently converted into the corresponding
tetracyclic spiro[cyclopenta[c]quinoline-2,5′-pyrimidine]-
2′,4,4′,6′(3′H, 5H)-tetraones 6a−6e in good yields.
To understand the mechanism, the substrate 1q was subjected

to reaction with 2 equiv of 2,2,6,6-tetramethyl-1-piperidinyloxy
(TEMPO) or butylhydroxytoluene (BHT) (Scheme 7a), but no
expected product 3q was observed with the starting material 1q
remaining. For the former reaction, the TEMPO-Cy adduct was
detected by GC-MS (MS = 239.2) analysis, which indicates the
possible radical mechanism. Subsequently, the deuterium
labeling experiment was performed to show a significant kinetic

isotope effect (KIE, KIE = 4.55) in an intermolecular competing
reaction of 2a and [D12]-2a (Scheme 7b), which confirmed that
the rupture of C(sp3)-H bonds on the cyclohexane ring occurs at
the rate-determining step.
On the basis of the above analysis and literature survey,2a,b,9b,11

the mechanisms were proposed and represented by the
formation of spiro products 3−6, (see Supporting Information).
In the former, the first step is to abstract H from the cycloalkanes
by tert-butoxy radical generated in situ from the Fe(II))-assisted
homolysis of DTBP. The resulting cycloalkyl radical undergoes
an α,β-conjugated addition followed by intramolecular radical
addition onto 1,7-conjugated enynes 1 to give radical
intermediate A, which undergoes 6-exo-dig cyclization to afford
vinyl radical intermediate B. The intramolecular radical coupling
between vinyl radical B and the cycloalkyl radical leads to the
formation of spiro product 3. The latter undergoes similar radical
addition (1 to C), 6-exo-dig cyclization (C to D), and radical
coupling (D to 5 and 6) sequences mediated by AgNO3 and
K2S2O8 (Scheme 7). Although the generation of alkyl radicals
triggered by various oxidants has been achieved well, the α,α-
C(sp3)-H bifunctionalization toward sprio-heterocycles via dual
radical H-abstractions is very rare in organic chemistry as
mentioned earlier.
In summary, we have discovered a new cascade spirocycliza-

tion reaction of 1,7-conjugated enynes with cycloalkanes and
cyclo-1,3-dicarbonyls through a unpresented α,α-C(sp3)-H
bifunctionalization activation under mild catalytic conditions.

Scheme 5. Substrate Scope for Synthesis of 5a

aReaction conditions: 1,7-conjugated enynes (0.25 mmol), 5,5-
dimethylcyclohexane-1,3-dione (0.50 mmol), AgNO3 (0.025 mmol),
K2S2O8 (0.5 mmol), 2.0 mL of CH3CN:H2O = 4:1 as solvent, 60 °C,
20 h. Isolated yields based on 1.

Scheme 6. Substrate Scope for Synthesis of 6a

aReaction conditions: 1,7-conjugated enynes (0.25 mmol), 1,3-
dimethylbarbituric acid (0.50 mmol), AgNO3 (0.025 mmol), K2S2O8
(0.5 mmol), 2.0 mL of CH3CN:H2O = 4:1 as solvent, 60 °C, 20 h.
Isolated yields based on 1.

Scheme 7. Mechanistic Studya

aReaction conditions: 1,7-conjugated enynes (0.25 mmol), FeCl2
(0.025 mmol), DTBP (1.0 mmol), 2.0 mL of cyclohexane as solvent,
120 °C, 12 h.
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This reaction provides an easy access to a series of spiro
cyclopenta[c]quinolines of chemical and biomedical importance.
The bond-forming efficiency, accessibility of starting materials,
functional group tolerance, and the scalable potential makes this
reaction a powerful synthetic tool with a great substrate scope.
Further investigation on the scope extension and asymmetric
version of this reaction is currently underway in our laboratories.
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